AFM Notes, Unit 1 Probability 1-7 Binomial Theorem	Name
According to the U.S. Census Bureau, ten percent o family has four children, there are six sequences of boys and two girls. Find these sequences.	f families have three or more children. If a births of boys and girls that result in two
9898 8989 6988 BB99	B99B 9BB9
Pascal's Triangle You can use the coefficients in powers of <u>tino</u> paossible <u>Sequences</u> in situation such as the polynomial with <u>two</u> <u>terms</u> b+g.	ne one above. Remember that a binomial is a
(b+g)°= 16°g°=1	
$(b+g)' = b'g^{\circ} + b^{\circ}g' = b+ g $	
$(b+g)^2 = b^2g^0 + 2b'g' + b^0g^2 = b^2 + b'g' $	2.bg + 1g ²
$(b+g)(b+g)$ $(b+g)^{3} = b^{3}g^{\circ} + 3b^{2}g' + 3b'g^{2} + b^{\circ}g^{3} = b^{3}g^{\circ} + 3b'g' + b^{\circ}g^{3} = b^{3}g^{\circ} + b^{3}g' + b^$	$1b^{3}+3b^{2}g+3bg^{2}+1g^{3}$ - $1b^{9}g^{4}=1b^{4}+4b^{3}g+6b^{2}g^{2}+4bg^{3}+1g^{3}$
0 - 00	expansion of $(b + g)^4$ gives the number of girls. As another example the coefficient 4
Here are some patterns that can be seen in any bino 1. There are	the exponent of a in the first term and the
b INCREASES by one. 4. The sum of the exponents in each term is	
5. The coefficients are <u>Symmetric</u> . The beginning of the expansion and <u>decrease</u>	They Increase at the at the at the

The coefficients form a pattern that is often displayed in a triangular formation. This is known Triangle. Notice that each row begins and ends with 1.

Each coefficient is the sum of the two coefficients about t in the previous row

				1					1	2	
$(a + b)^0$				1	18						
(a + b) ¹			1		1						
$(a + b)^2$		1		. 2		1					
$(a + b)^3$		1	3		3		1				
(a + b) ⁴	1	4		6		. 13		1			
$(a + b)^5$ 1		5	10		10		5	,	1	ı	
(a+b)4 1	6	15		20		1.5	5	6		•	
		_ : _ 1-									

Example 1: Use Pascal's Triangle

Expand $(x + y)^7$

Write two more rows of Pascal's triangle.

Use the patterns of a binomial expression and the coefficients to write the expansion of $(x+y)^7$ $(x + y)^7 =$

$$|x^{7}y^{\circ} + 7x^{5}y^{'} + 2|x^{5}y^{2} + 35x^{4}y^{3} + 35x^{3}y^{4} + 2|x^{2}y^{5} + 7x^{5}y^{6} + |x^{9}y^{7}|$$

$$|x^{7}y^{\circ} + 7x^{5}y^{4} + 2|x^{5}y^{2} + 35x^{4}y^{3} + 35x^{3}y^{4} + 2|x^{2}y^{5} + 7xy^{6} + |x^{9}y^{7}|$$

$$|x^{7}y^{\circ} + 7x^{5}y^{4} + 2|x^{5}y^{2} + 35x^{4}y^{3} + 35x^{3}y^{4} + 2|x^{2}y^{5} + 7xy^{6} + |x^{9}y^{7}|$$

The Binomial Theorem

Another way to show the coefficients in a binomial expansion is to write them in terms of the previous coefficients.

$$(a + b)0$$

$$(a + b)1$$
 1 $\frac{1}{1}$

$$(a + b)2$$
 1 $\frac{2}{1}$ $\frac{2 \cdot 1}{1 \cdot 2}$

(a + b)3 1
$$\frac{3}{1}$$
 $\frac{3 \cdot 2}{1 \cdot 2}$ $\frac{3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3}$

$$(a + b)4$$
 1 $\frac{4}{1}$ $\frac{4 \cdot 3}{1 \cdot 2}$ $\frac{4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3}$ $\frac{4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 3 \cdot 4}$

This pattern provides the <u>Coefficients</u> of (a + b)n for any nonnegative integer n. The pattern is summarized in the <u>Bindmial</u>

If n is a nonnegative integer, then

$$(a+b)n = |a^nb^0 + \frac{n}{1}a^{n-1}b^1 + \frac{n(n-1)}{1\cdot 2}a^{n-2}b^2 + \dots + |a^0b^n|$$

Example 2: Use the Binomial Theorem Expand $(a - b)^6$

The expansion will have $\frac{7}{1}$ terms. Use the sequence $\frac{1}{1}$, $\frac{6.5}{1\cdot 2}$, $\frac{6.5\cdot 4}{1\cdot 2\cdot 3}$ to find the coefficients for the first four terms. Then use $\frac{5 \text{ ymmetry}}{1}$ to find the remaining coefficients remaining coefficients.

$$(a-b)6 = |a^{6}b^{6} - \frac{4}{1}a^{5}b^{6} + \frac{6.5}{1.2}a^{4}b^{2} - \frac{6.5.4}{1.2.3}a^{3}b^{3} + \dots |a^{6}b^{6}|$$

Note:

The factors in the coefficients of binomial expansion involve special products called

read as 4 factorial. In general, if n is positive integer, the

= n(n-1)(n-2)(n-3)...

Example 3: Factorials

Evaluate

An expression such as ______ in Example 2 can be written as a quotient of factorials. In this case ______ (a + b)6 using factorials: 3!3!(a + b)6 using factorials:

$$(a+b)^6 = \frac{6!}{6! \cdot 0!} a^6b^4 + \frac{6!}{5! \cdot 1!} a^5b^1 + \frac{6!}{4! \cdot 2!} a^4b^2 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^5b^4 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^2b^4 + \frac{6!}{1! \cdot 5!} a^3b^5 + \frac{6!}{3! \cdot 3!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^3b^3 + \frac{6!}{2! \cdot 4!} a^3b^5 + \frac{6!}{2! \cdot 4!} a^3b^3 + \frac{6!}{2!} a^3b^$$

You can also write this series using sigma notation.

$$(a+b)^{\ell} = \sum_{k=0}^{\ell} \frac{(a!)!}{(a-k)!} \cdot a^{k-k} b^{k}$$

10! a o b 4

In general, the <u>Binomial</u> <u>Theorem</u> can be written both in <u>factorial</u> noation and in <u>Sigma</u> notation.

Example 4: Use a Factorial Form of the Binomial Theorem
$$(2x+y)^5$$

$$\frac{5!}{(5-k)!} \cdot (2x)^{5-k} y^k + \frac{5!}{0!5!} \cdot (2x)^{5-k} y^k + \frac{5!}{3!2!} \cdot (2x)^{5-2} y^2 + \frac{5!}{2!3!} \cdot (2x)^{5-3} y^3 + \frac{5!}{1!4!} \cdot (2x)^{5-4} y^4 + \frac{5!}{3!2!} \cdot (2x)^{5-4} y^5 + \frac{5!}{3!2!} \cdot (2x)^{5$$

Sometimes you need to know only a particular term of a binomial expansion. Note that when the Binomial Theorem is written in sigma notation, k = 0 for the first time, k = 1 for the second term, and so on. In general, the value of k is always one less than the number of term you are finding.

Example 5: Find a Particular Term

Find the fifth term in the expansion of (p + q)10.

First, use the Binomial Theorem to write the expansion in sigma notation.

If the fifth term, k = 4.