\qquad

Solve for x. Please show work on a separate sheet of paper.

1. $\frac{1}{2}^{x} * 64^{3 x}<\frac{1}{8}^{(x-4)}$
2. $\log _{3}(x-1)=2$
3. $\log _{7}(8 x+20)=\log _{7}(x+6)$
4. $\log _{4}\left(x^{2}-4\right)-\log _{4}(x+2)=\log _{4} 1$ \qquad
5. $\log _{6}(2 x-5)+1=\log _{6}(7 x+10)$ \qquad 6. $2 \log _{5}\left(x^{2}+9\right)-2=0$ \qquad

Use $\log _{10} 4 \approx 0.6021$ and $\log _{10} 6 \approx 0.7782$ to approximate the value of each expression. You must show work using the properties. If you just give approximations, you will receive no credit.
7. $\log _{10} 24$
8. $\log _{10} 1.5$
9. $\log _{10} 16$
10. Write an exponential function whose graph passes through $(0,4)$ and $(15,148)$.
11. The value of a new car just purchased from the dealership is $\$ 25,995$. After 5 years, the value of the car has decreased to $\$ 15,550$. Write an exponential model to represent the value of the car after x years.
12. Using your equation from \#11 find the value of the car after 12 years.

